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ABSTRACT

COUPLED BENDING-TORSION STEADY-STATE RESPONSE OF PRETWISTED,
NONUNIFORM ROTATING BEAMS USING A TRANSFER-MATRIX METHOD

Using the Newtonian method, the equations of motion are developed
for the coupled bending-torsion steady-state response of beams
rotating at constant angular velocity in a fixed plane. The resulting
equations are valid to first order strain-displacement relationships
for a long beam with all other nonlinear terms retained. In addition,
the 'equations are valid for beams with the mass centroidal axis offset
(eccentric) from the elastic axis, nonuniform mass and section proper-
ties, and variable twist. The solution of these coupled, nonlinear,
nonhomogeneous, differential equations is obtained by modifying a
Hunter linear second-order transfer-matrix solution procedure to solve
the nonlinear differential equations and programing the solution for a
desk top personal computer. The modified transfer-matrix method was
verified by comparing the solution for a rotating beam with a
geometric, nonlinear, finite-element computer code solution; and for a
simple rotating beam problem, the modified method demonstrated a
significant advantage over the finite-element solution in accuracy,
ease of solution, and actual computer processing time required to

effect a solution.
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CHAPTER 1
INTRODUCTION

At the Langley Research Center there are several wind tunnels
which are driven by rotating propeller or fan blade systems. Nearly
all of these tunnels have been in operation for several years; and in
order to ensure safe and continued operation, the existing blades will
require a thorough evaluation of the steady-state response under the
current operating conditions. To determine the steady-state response
of rotating blades, effective and efficient analysis techniques are

required that consider the unique features common to rotating systems.

An important consideration in the structural analysis of a
rotating beam 1is the effect of the coupling between the centrifugal
force and the elastic stiffness (deflections) of the beam. This
effect provides a stiffer structural member in both the beamwise and
chordwise directions. To solve this problem and take advantage of the
centrifugal-stiffening effect is difficult due to the necessity of
having to know the deformed state of the beam in order to apply the

steady-state centrifugal loads.

The literature is extensive with current and classical papers

concentrating on the rotating beam problem. Among the more notable is



the linear analyses of Houbolt and Brooks [1]*. In their paper, they
systematically develop the governing differential equations for the
coupled bending and torsion of pretwisted blades assuming shear and
rotary inertia are negligible. The warping rigidity for a slender
beam was implicitly considered by incorporating a St. Venant torsion
term in the internal elastic torque equation. Hunter [2] developed a
system of linear coupled differential equations for small displace-
ments where the axial displacement and centrifugal force equations
easily uncouple, and allows the axial component equations to be solved
separately from the transverse component equations. These equations
illustrate the basic but essential physics of the rotating beam and
were developed specifically to demonstrate an integrating-matrix
method for solving homogeneous differential equations. Shear and
rotatory inertia effect were considered by Stafford and Giurgiutiu [3]
for the uncoupled uniform vibrating beam rotating in a fixed plane.
They found that these effects were more noticeable for blades
operating at higher speeds (turbomachinery blades). These and other
similar papers, however, center around predicting the natural vibra-
tion characteristics [2,3,4] of rotor blades (rotating beams). The
concern with the natural vibration problem is to accurately determine
mode shapes and natural frequencies of rotors to avoid resonance. The
natural vibration problem, in effect, solves the eigenvalue problem
resulting from eliminating the nonhomogeneous part of the governing
equations of motion. Solutions of the eigenvalue problem are

important in the design of rotating beams, but solutions for the

* The numbers in brackets indicate reference.
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steady-state response of the rotating beam are also important for
determining strength for fatigue evaluation and distortions for

clearance evaluations.

The purpose of this thesis is to address the development and
solution of the governing equations of pretwisted rotating beams under
the influence of steady-state aerodynamic and inertial loadings (the
nonlinear nonhomogeneous boundary-value problem) using a transfer-
matrix method. The transfer-matrix solution method has been selected
because of its capability to account for the variation of the beam's

geometry (stiffness and mass) and loading along the span of the beam.

Chapter 2 first develops the kinematics of the longitudinal
deformations of the beam including uniform extension, bending about
two axes, and uniform twist. Second, the stress resultants for a
Tinear elastic material are developed using the longitudinal strain.
Following the development of the internal stress resultants, the
acceleration of a differential element where the elastic and
centroidal axes are not coincident is derived for a steady-state
rotating element. By application of D'Alembert's principle to the
resulting steady-state inertial loads, the equilibrium equations for a
differential element under transverse and torque loadings are
developed. Chapter 3 formulates the resulting 12, coupled, nonlinear,
first-order, ordinary differential equations derived in Chapter 2 into
a classical boundary-value problem. Since the intended application of
this development is to provide a complete analytical tool, Chapter 4
presents a nonlinear solution method for solving the derived

equations, and Chapter 5 discusses the computer programs necessary to



implement the solution algorithm. Chapter 6 describes an application
of the theory, solution algorithm, and computer programs necessary to
analyze a new fan blade design for the 7- by 10-Foot Wind Tunnel at

the Langley Research Center. Results from the transfer-matrix approach
are evaluated by comparison with finite-element results. In Appendix
A, a derivation of the second-order Hunter transfer-matrix method is
presented, and Appendix B gives the details of calculating the
necessary cross-sectional integrals for a typical 7- by 10-Foot Wind

Tunnel fan blade.



CHAPTER 2
MATHEMATICAL FORMULATION

The system of displacements for a generalized flexure theory is
derived based upon the assumption that regardless of the loading, the
original shape of the cross section is unaltered during deformations.
Thus, the geometric dimensions of every plane normal to the longitudi-
nal axis of the beam remains unchanged. Note, however, that this
assumption precludes any type of out-of-plane cross-sectional defor-
mations (neglect warping and shear deformations). Following from these
displacements, the longitudinal strains are developed as is done by
Houbolt and Brooks [1] for a beam under both lateral, extensional, and
twisting motion. After expressing the inertial loads on a beam in
terms of the deformations, the derivation then considers the
equilibrium of a deformed beam in terms of its geometry and resultant
loads, thus, yielding a set of nonlinear governing differential
equations for the longitudinal, transverse, and torsional deformations

of an elastic structure.
2.1 Analysis of Displacements

The cross-sectional plane defined by x equals a constant (see
figure 2.1) is allowed to undergo u, v, and w displacements of the

elastic axis. In addition, the cross section is allowed to rotate Oy



and 0, about the y and z coordinate axes, respectively. The cross-
sectional twist, ¢, is measured about the elastic axis, x. By passing
a plane through the beam that is normal to the cross-section's x-axis,
the location of a point, P, on the pretwisted cross-section may be
described for both the undeformed (figure 2.2(a)) and deformed,
(figure 2.2(b)) beam. Attached to the cross-section is a (n,¢)
coordinate system that moves with the deforming cross-section and is
Tocated at the shear center. The angle B locates the positive n-axis
which locates the principal minor axis of inertia relative to the

positive y-axis.

The position vector r to the point P in the y-z and n-g

coordinate systems is given by

-
X 0 0 X

r=(ny) = (Z cos (B) sin (s;] {y (2.1)
z lQ -sin (8) cos (BL] kz

r

X 0 0 - X

r=4qyp-= [? cos (B) =-sin (B;J { n (2.2)
z 0 sin (B) cos (B z

The rate of change, using primes to denote differentiation with
respect to x, of the point P with respect to the longitudinal axis is

then given by

y [F-sin (g) -cos (8Y] [ n

= B‘L (2.3)
2! cos (B) -sin (B)] | ¢z



Using equation (2.1) in (2.3) yields

=g' (2.4)

Next by imposing the u, v, and w displacements at the elastic axis and
also rotating the cross section by the angle ¢4, the position vector
ry (see figure 2.2) is expressed in terms of the original position
vector r and the cross-sectional displacements. Recall that the
fundamental assumption of this development is that the original cross-
section does not change its shape: this implies that the vector r
relative to the n-¢ system is unaffected. Thus, only the kinematics

of the cross section in the y-z system are evaluated.

The x; component of the ri vector is composed of contributions
due to extension and bending about the y and z axes. Therefore, by
superimposing the extension (figure 2.3(a)) and bending (figures

2.3(b) and 2.3(c)) effects, the xj; component is

X] = X+tu-y Qv _ (2.5)

dx dx
or by using primes to denote differentiation with respect to x,
Xx] =x+tu-yv -zw (2.5)

The other two components of rj, y; and zy, are found by using
equation (2.2) with the pretwist angle, B8, replaced by the total

twist, (B+¢).



¥1 cos(B + ¢) -sin(B + ¢) 7| n

(2.6)
z] sin(g + ¢) cos(g + ¢) 1| ¢
In addition, if the usual small-angle assumptions are made for ¢ and

using double-angle trigonometric identities, then equation (2.6)

becomes

y1 [[cos (8) - ¢ sin (8)] [- sin (B) + ¢ cos (e)]:l n
77 [sin (B) + ¢ cos (8)] [cos (B) - ¢ sin (8)]

Expanding equation (2.7) and using equation (2.1) Teads to

-0

Superimposing the v and w displacements of the elastic axis and

including equation (2.5), the position vector ri becomes

xj] [x tu-y v -zw
?1= y1=V+)’-Z¢ (29)

Z] w+ 2z +y ¢

Using equation (2.9), the rate of change of ri with respect to x is

given by

X1 l+u' -y' vi-yv'' -z'w -zw
rit =y v vyt -zt 6 -z g (2.10)

21"l w2ty pty b



Collecting terms and using equation (2.4), equation (2.10) becomes

x1| 1 + ul _y( vl|+ BI wl) - z( wIl - Bl vl)
ri' =y V=iVt -y Bt -z(8'+ ") (2.11)
zlu wl +y(81 + ¢|) -z Bl ¢

Thus, after deformation, the position vector of a point, P, is given
by equation (2.9), and its derivative with respect to x is given by

equation (2.11).

2.2 Analysis of Strain
From the displacement analysis results, the longitudinal strain,
€, that is developed in a longitudinal fiber, is derived analytically.
Let the point P under displacements (u,v,w) of point o (elastic axis,

see figure 2.2(b)) and rotations (¢, v'. w') of the cross-section, be
displaced to P' (x1, y1, 23) on the rotated cross-sectional plane as
given by equation (2.9). Then the differential length, dsi,

correponds to

(ds1)2 = (dx1)2 + (dy1)2 + (dz7)2 (2.12)

or

(dsi)2 (x1')2 + (y1")2 + (21")2 (2.13)

Performing the indicated algebra and using equation (2.11), each of
the components on the right hand side of equation (2.13) has the

following form



(x0')2 =1 + 2u" + (u")?

+ (- 2v''- 2w'B'- 2u'v''- 28'u'w')y

+ (- 2w''+ 2v'g' - 2u'w''+ 2 g'u'v')z

+ (v W' - 28'v'v' - 2(B")2v'w!' + 28'W') yz
0 (v 2+ 28w+ (8")2(w")2 )2

+ (w2 < 28'v'w't + (8")2(v')2 )z2 (2.14)
(y1')2 = (v')2 + (-2 g'v'e)y + (-2 B'V' -2 ¢'V') z
+ (2082 + 2 8'¢'dlyz + ( (8')2(4)2 ) y2
+ (82 + 28" + ($)2 )22 (2.15)
(21')2 = (W")2 + ((28'w' +2w'¢' )y + ( - 2 B'W'e)z
+ (20812 - 2800 dyz + ( (82 + 28'¢" + (4")2 )y2
+ ( (8")2(¢)2 )22 (2.16)

Substituting equations (2.14)-(2.16) into equation (2.13) leads to

(5192 =1 +2u" + (U2 + (v)2 + (w')2

+H(=2v'' - 2u'v'' - 'w'g' - 28'v'p + 2¢'w' Dy
+H(-2w'' - 2u'w'' +2u'v'g' - 2 B'Ww'e - 2¢'V' )z
H2v''w' - 2viBty' o 2w''w!' - 2v'w'(8')2 )yz
FH(v'2 + 2wy + (w)2(81)2 + (8')2 + 28"
+ (62 + (8")2()2 )y2

(w2 - 2v'a'w't + (v1)2(8')2 + (8')2 + 2"y’
+(6")2 + (8")2(4)2 )22

(2.17)

10



For this development, the assumption is that the problem formulation
be restricted to small displacements. Thus, the second-order terms
in equation (2.17) are much less than unity; therefore, only the

first-order displacement terms, (underlined in equation 2.17), are

retained.
ds
or = [T+ 2w 2yvt 2w+ (v2 + 22 )((8)2 + 2'9")] 12
(2.18)

Taking the initial length of ds to correspond to u = v =w = ¢ = 0,

equation (2.18) reduces to

gf = 1+ (y2 + 22) (g)2] 1/2 (2.19)

Making use of the fundamental definition of longitudinal strain to the

first order in dx

_dsy - ds
e = EL (2.20)

and equations (2.18) and (2.19), the following result is obtained

1 +2u' -2yv'' ~2zw''+(y2 + 22)(8'2 +28'¢)}+5 - {1 +(y2 +22)p'2}-5

e = {
(1 + (y2+22) (8)2) -5

(2.21)

Noting that each of the square root terms in equation (2.11) is of the

form
(1 + §)1/2 (2.22)

11



which can be, for small §, approximated by
1+ 6/2 (2.23)
Making use of equation (2.23), then equation (2.21) can be reduced to

u' - yv'lezw' 4 (y2 + 22 )l

E =

1+ (y2 + 22 1{;L12 (2.24)

A closer evaluation of the second term in the denominator of equation
(2.24), for most rotating beams that are used as fan blades and
propellers, reveals that the (8')2 term is usually on the order of

1° per inch. This can, for most geometries, reduce the second term

to the order of 0.01 which is much less than unity; therefore,
it is neglected. This yields the final Tlinear expression for the
longitudinal strain of

e =u' -yv'' -zw'' o+ (y2 + 22)8' ' (2.25)

As pointed out in reference [1], the above expression for the
longitudinal strain includes the effects of four general types of
motion: wuniform longitudinal extension of the cross section; rotation
of the cross section due to two axes bending; and rotation of cross-
sectional planes relative to each other about the elastic axis due to

twisting of the beam.

2.3 Analysis of Inertial Loads
The acceleration of a rotating beam is determined at the centroid

of the segment, see figure 2.4. For this derivation, the axis of

12



rotation is assumed to coincide with the z-axis, which is normal to
the elastic axis. Thus, the location of the center of mass on the

cross section is given by

Y i+ Yyt Ipk (2.26)

where the components of ry, in the deformed configuration. are

determined by using equation (2.9).

Xn = Xptu-ypv -zpw (2.27)
Iy = Zp v WHyy ¢ (2.29)

The origin of the elastic axis is assumed to coincide with an
inertial frame such that the elastic-axis coordinate system is seen as
just a rotating system with respect to this inertial frame. Thus, the
position vector, equation (2.26), describes the location of the center
of mass of each cross-section explicitly in terms of the undeformed
location and the displacement components; therefore, the time deriva-
tives (denoted by dots) of the position vector are easily determined.

The velocity of the center of mass is given by

T = Xn it X i+ Y+ Vit Zpk 2k (2.30)

13



Since the i, j, and k system is just rotating with respect to the

inertial frame, the time derivatives of the bases vectors are

i=a § (2.31)
j=- i (2.32)
k= 0. (2.33)

Also, the time derivatives of the components of the position vector ry

are

im = u- Ym v' - Zn W' (2.34)
Yp= V-2 (2.35)
Tp= W*yp o (2.36)

Using equations (2.31)-(2.33), equation (2.30) becomes

im = (*h -aVp )i o+ ﬁh +Q Xp)d + im k (2.37)

Following the same approach, the acceleration of the center of mass of

a cross section, assuming a constant rotation, is

v = (R - 20V - 02 )i + (T + 2 2 %y = 02 V) + Iy k (2.38)

14



where

Xp = U -y V' -z W' (2.39)
Y = vz (2.40)
Tp= Wyt (2.41)

Upon substituting equations (2.39)-(2.41) into equation (2.38), the

acceleration of the center of mass becomes

Fmo= [0 - ypV' -z’ - 2 9(V- zy) - a2(xptu-ypv'- zgw')] i
[V -z + 20l -ygv' - zgw') - Q2(yp + Vv - zpo) 1J
[w+ypt Tk (2.42)

For the purpose of this analysis, the motion of concern is the steady-
state response of the beam. Thus, all time derivatives are zero: and

equation (2.42) becomes

-2 (xp*t U -ypV-zpgw)i -yp+tv-zye)]

(2.43)

1
>
x
'-a
+
‘<>
Jea

15



2.4 Development of Governing Equation

2.4.1 Derivation of Equilibrium Condition
For the derivation of the equilibrium conditions of a rotating
beam as shown in figure 2.5, attention is restricted to the steady-
state response of a beam that is rotating at a constant angular
velocity under steady-state aerodynamic 1ift (P,), drag (Py), and
torque (gx). The aerodynamic loads are assumed to be resolved to the

elastic axis as varying distributive loads.

A differential beam segment is shown in figure 2.6 with its
associated loads: internal, inertial, and aerodynamic. For the
steady response of a rotating beam, the differential inertial loads
are assumed to act at the center of mass of the differential segment.
Using D'Alembert's principle of dynamic equilibrium, the inertial
loads are treated as if they were applied static forces, but in the
opposite sense. Referring to figure 2.6(a), the axial equilibrium
condition is

T+_g_l_.dx_1'-prdx=O (2.44)
Upon substituting the i-component of equation (2.43) into equation
(2.44) and simplifying, the governing equation for the tension becomes

9o 2y tu -y v - zg W) =0 (2.45)

dx

Summing the forces in the y-direction, figure 2.6(b), the following

equilibrium equation is derived
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+ dvy d V, + P, dx = 0 (2.46)
VY a;—dx-pAy X'y yx- .

Using equation (2.43), equation (2.46) becomes

dv
a}x_+ 002 (v +yp-zpo )+ Py =0 (2.47)

Similarly, the z-force equilibrium equation is derived, see figure

2.6(c).
av,
v, + a;—-dx -V t PZ dx =0 (2.48)
or
dvy -
aw * P, =0 (2.49)

The sum of the moments in the x-y plane, about the center of the

differential element, figure 2.6(b), yields the following

dMz dx dv dx
Mz + g dx = Mz - pAx(yq -zpé)dx + E—»(vy + H?X dx) + > vy

,dx dT dx
-v'=Z

+ — - v'= = .
> T I dx) - v > T 0 (2.50)

Dividing through by dx, using equation (2.43) for Ay, and taking the

limit as dx goes to zero, equation (2.50) reduces to
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dMZ 2 t, 2 1
ax P9 0m Y U Y VYRS - Wz Yy - X Zg 6 - U Zpd

*V'yp 2z 0 +w'zg2e) +Vy - V' T =0 (2.51)

Similarly the moment equilibrium equation in the x-z plane is derived

dMy o , 2
T + 0 Q%xp Zy * U Zpy V'Y Zpm W Zpt + Xy Y ¢t U Yo

-V'ym2 ¢ W'ym Zpd) -V, +w'T =0 (2.52)

From figure 2.6(a), the equilibrium equation for the y-z plane
(torque) is
P oy - o 02 . - 22 2, . 2) -
Tt e zmV+ynZn - Zp© o +ymV o+ Ypc ¢ - 2 Yy ¢¢) =0
(2.53)
There are now 6 equations, (2.45,47,49,51-53), and 10 unknowns (T, Vys
Vz, My, My, My, u, v, w, ¢) which indicates that additional relation-
ships are required. The additional equations can be developed from
the internal elastic equilibrium (stress resultant) constraint imposed
on a cross section that the integrated stresses balance the resultant

lToads at the elastic axis.

2.4.2 Internal Elastic Loads
By assuming the longitudinal material orientation of the rotating
beam behaves as a linear elastic material, the constituent relation-

ship can be described by Hooke's law.
o=FE ¢ (2.54)
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where E is the apparent longitudinal modulus of elasticity, and ¢ is

given in equation (2.25).

From the above definition, the stress distribution over the
cross-section may be resolved into the internal resisting loads at the

elastic axis, see figure 2.7.

The axial, T, and bending, My and M,, internal loads are given by

T =‘ro. dA (2-55)
My = fo zdA (2.56)
(2.57)

M, =-Jﬁo y dA

By introducing the minus sign on the M, component, a tensile
Tongitudinal stress will be produced when a negative M, is introduced;
this makes the sign of the normal stress consistent with the sense of
the internal load, see figure 2.6a. As pointed out by Houbolt and
Brooks[1], the selection of the elastic axis as the primary reference
axis was to eliminate the shearfng stresses that are associated with
the longitudinal stresses from contributing to the total resisting
torque, My, Because of the pretwist, the longitudinal stress has a
component that contributes to the internal torque (see figure (2.8)).
From figure (2.8), it is seen that the inplane components of the

normal stress produce a torque
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Mxn = ‘1‘0 (n2 + £2) (8" +4') dA (2.58)

Substituting equation (2.1) into equation (2.58) and noting that the
Jocobian relating the differential areas in the y-z and n-z systems is

unity, equation (2.58) becomes

Myn = fc (8" + ¢")[ y2 + 22 1dA (2.59)
As is done in [1], equation (2.59) is combined with the St. Venant
twisting which leads to the following equation for the total resisting

internal torque.

MX = fc (B' + ¢l)[ yz + 22 ]dA + GJ¢| (2-60)

For convenience, the internal resisting loads are restated again using

equation (2.25)

T =E f (ul _yvll -zw'" +(y2 + 22)8'¢')dA (2.61)
M.y = F f Z(U' _yvll 2w’ +(y2 + 22)8'¢|)dA (2-62)
H (2.63)

Mz =-E J"' ylu' -yv'' —zw'' +(y2+22)8' 4" )dA
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My = E .f’(yz + 22)(g" + o' Mu' -yv'' —2w'' +(y2 + 22)8'4' )dA + GJo'

By making use of the following definitions,

P1

P2

= gr yz dA

‘I’dA

J

J 2

(typical units in2)

22 dA (typical units in%)

(typical units in%)

(typical units in%)

J" (y2 + z2) dA (typical units in%)

J" y dA

J

e
J

(typical units in3)

z dA (typical units in3)

z(y2 + z2) ¢a
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(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)



(2.73)

©
FN
)

uf y(y2 + z2) dA (typical units in%)

(2.74)

uf (y2 + 22)2 dA (typical units in®)

the integrations, as indicated, in equations (2.61)-(2.64) can be

performed to yield the following

T =ELAU -PL V' -Ppw' +1p8" '] (2.75)
My =EL[Ppu'-TI,v'"'-TI,w'+P38" ¢'] (2.76)
Mz = E [-Pyu'+ I, v'' + 1, w'' - Pg8' o' ] (2.77)
My =6 ¢' +E[ Iy B'u" ~Pg ' v'' -P38 w' +Pg(8')2

+ Ip ¢Iul _ P4 ¢| vll _ P3 ¢| wll +P5 (¢|)2]
(2.78)

Equations (2.75)-(2.78) define the internal elastic equilibrium which
relates the internal forces to displacements. This now increases the
number of equations to 10, and thus, ensures a compatible system of

equations and unknowns.
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CHAPTER 3

FORMULATION OF GOVERNING EQUATIONS AS A CLASSICAL
BOUNDARY-VALUE PROBLEM

The preceding analysis has furnished a set of coupled nonlinear
differential equations. These equations together with constraints or
conditions on the boundaries comprise the classical boundary-value
problem. This chapter is an organized summary of the previously
derived governing equations recast and formatted in a form that yields

a system of first-order differential equations.

3.1 Differential Equations
To summarize, the six equilibrium equations (2.45), (2.47),

(2.48), (2.51), (2.52), and (2.53) are restated.

gI: -QQZ(Xm+u -ym v' 'Zm w|) (3'1)
dx
dav
aYY_ = <~ p 92 (V + Ym - Zm 4)) - P_Y (3.2)
dv,
T - P, (3.3)
dM, )
— T =Gx + p Q¢ (z V+ Y Zm - 2.2
o m m Zm me ot ym v oty e -z Ym $2)

(3.4)
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dMy 2 1 1 2
= -0 X Zy t U Zy - VY Zn - WZpt t Xy Y ¢t uyp ¢

“dx
- V'Yl 6 - W'yp Zp 6) * VY, - W'T (3.5)
M s o 020 Yy + U Yy V'V - W'Zg Y - X Zm 6 - U Zp 6
< m m m mYm = Xm Zm m
+V'yp zp ¢+ w'zm2 o) - Vy +v'T (3.6)

Similarly, the stress resultant equilibrium equations (2.75-78) are

restated.
T =ELAU -PLv'' -Prw' +158" ¢' ] (3.7)
My =EL[Ppu'-I,,v'-1,w'+P38" o] (3.8)
Mz = E [-Pg u'+ I, v'' + 1, w'' - Pg 8" ¢' ] (3.9)
My =G ¢' +E[I, 8" u' -Pgp' v'' -P3g w' +Pg(8)2¢

+ Ip ¢|u: _ P4 ¢l V” - P3 ¢l wll +P5 (¢|)2]
(3.10)
Since the proposed solution method utilizes matrix methods, equations

(3.7-10) are written as first order differential equations in matrix

form by letting

v 01
= [j :] {'Qy (3.11)
wl -1 0 OZ
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[ EA E ' Ip
EB'I, GJ+Co
E P E ' P3
L -E Py -E B8' Py

E P2
Eg' P3

E Iyy

yZ

-E Pl
-E ' P4
yz

EI,,

where Co = E Ip u' - EPgo," +EP30 +EP5¢'+EPs (8')2

Equation (3.12) is of the form

Y (1)
M
. )
Oy My
keza \Mza

(3.13)

Since equation (3.12) is nonsingular, the solution of (3.12) or (3.13)

can be obtained.
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Figure 3.1 is a summary of the twelve first order differential
equations in matrix form. These 12 equations are now in a form that
is easily integrated by a transfer-matrix method. The general
character of the equations is that four of the equations result in
solutions for the unknown displacement (u, v, w, ¢), and six of the
equations yield solutions for the generalized loads while the
remaining two equations (3.11) are definitions to reduce the second
order differential equations (3.7-10) to first-order differential

equations.

3.2 Boundary Conditions
As is the case with most boundary-value problems, the types of

boundary conditions that can be specified are generally either
geometric, natural, or a complicated combination of both. One special
feature of the transfer-matrix solution method is that it can easily
handle any combination of homogeneous or nonhomogeneous, natural or
geometric boundary conditions. For the rotating beam, the boundary
conditions are geometric at the fixed support end and natural at the

free or cantilevered end.

In terms of the coordinate system shown in figure 2.7, the
boundary conditions for complete fixity (constrained against all

displacements) at the support are
U=V=W=¢=Oy=ez=0 (3-15)

For a free end ( free to displace) the boundary conditions are

T=Vy =V, =M =M =M =0 (3.16)



If there were, for example, a tip mass attached to the rotating beam,

the axial force as well as the shear forces at the free end may be

nonzero which results in nonhomogeneous conditions.

Again, this

apparent complication, as is shown in the applications sections, is no

more difficult to handle than the homogeneous conditions.

The above boundary conditions can also be represented in a matrix

format.

Fixed end (geometric) -

-

1000000000007]
010000000000
0010000000CO00O
000100000000
000010000000

00000100000 0_|
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» = [0]
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Free
00
00
00
00
00

00

end (natural)
0000100
0000010
0000001
0000000
0000000
0000000

00 7]
00
00
00

10

01
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= [0]
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CHAPTER 4
TRANSFER-MATRIX SOLUTION METHOD

A method is developed for numerically computing the solution of a
set of coupled, first-order, nonhomogeneous, nonlinear differential
equations. The solution technique employs an integration similar to
the Hunter methodl which is extended here to a fourth-order
Runge-Kutta scheme to improve the numerical accuracy when limited

station properties are available.

The technique of using the transfer matrix to solve a wide class
of boundary-value problems can readily be found in the literature.
However, the earlier development of the transfer matrix was primarily
employed to solve the homogeneous problem [5,6]. This approach proved
to be a useful analytical tool in determining the natural modes and
frequencies of vibrating beams, wings, and propellers. Other matrix
methods such as the integrating-matrix [2] have also been employed,
with a great deal of success, to solve the nonhomogeneous problem.

More recent application of the transfer-matrix method [7], addresses

1 The Hunter method, which was developed in 1974, is an
undocumented transfer-matrix solution process that can easily account
for the nonhomogeneous part of a set of first-order differential
equation. A complete development of the method is presented in

appendix A.
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both the nonhomogeneous and the homogeneous boundary-value problem.
These methods, however, require an extensive library of transfer and
point matrices as well as some manipulation of the matrices to satisfy
and impose boundary conditions. In addition, each new class of
boundary-value problems requires a special technique to derive the
transfer-matrix from the differential equations. In the present paper,
~ the presented method allows for a more direct solution of the
boundary-value problem by formulating the transfer matrix directly
from the differential equations and solving the linear equations
completely in two passes over the solution domain. The first pass is
required to satisfy all boundary conditions, both natural and
geometric; and the second pass computes the solution at the selected

stations within the closed interval defined by the boundary points.

4.1 Fourth-order Runge-Kutta Transfer Matrix
The Hunter transfer-matrix (appendix A) method can be shown to
parallel a second-order Runge-Kutta integration. Using this fact, an
improvement on the accuracy of the Hunter method is easily obtained by

directly applying a fourth-order Runge-Kutta to equation (A.1l).

{Y'y = [A] {Y} + {B} (4.1)

Rewriting equation (4.1) in the following functional form

{Y'ty =F (x, Y) : (4.2)

and using a standard fourth-order Runge-Kutta integration [8], the
value of {Y} at the (i+l) station in terms of the value of {Y} at the

i station is
30



{Yi+1} = (Y4} + 1/6 ({by} + 2 {bp} + 2 {b3} + {by}) (4.3)

where the {b}'s are defined to be

(b1} = hy Flxq, {Yj}) (4.4)
{by} = hi Flxj + 1/2 hi, {Yj} + 1/2 {b}) (4.5)
(b3} = hy Flx; + 1/2 hy, {Y;} + 172 {bp}) (4.6)
{bg} = hj Flx; + hy, {Y;} + {b3}) (4.7)

Using equation (4.2) in equations (4.4-7) yields

{b1} = hy [A;] {Y;} + h; {B;} (4.8)
h1°2
{bp} = hi [K] {Y;} + —E—-EI] (A;] (Y5}
hiz
+ h; {B} + ~ [A] {Bj} (4.9)

hs2 _ hid
tb3} = hy [A;] {¥;} +¢2 [A] [A] {¥;} + —— [A] [A] [A;] (Y;}
hi2 . h3
+ hy (B} + - [A] {B} + e [A] [AT (B;} (4.10)
hi3
{bg} = hj [Aj41] 1Y} + 32 [A541] (AT (Y53 + E——-[Ai+1] (A1 [A] {Y;}
h'i4 .
+T [A-i.;.l] [A] [A] [A;] {Y;}
. . . = h; 3 - =
+ h] {B‘H'l} + h-,z [A1+1] {B} +___12_ [A1+1] [A] {B}

hs4
+ —— [Aj+1] [A] [A] By
4 (4.11)
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where the [A] and {B} matrices are the average of the [A] and {B}

matrices at the i th and i+l station, respectively.

Substituting equations (4.8-11) into equation (4.3), collecting
terms, and developing an equation similar to equation (A.10), new [E]
and {F} transfer matrices 1ike those in equations (A.11) and (A.12)

can be defined as follows

(€41 = (13 + 20 ([A] + 4TRD + [Aj])
h1'2
+ —L ([R] [A;] + (K] [K] + [Ag4;] CRD)

hs3
+# ([K] [K] [A;] + [A441] [AD CAD)
h'i4
+ —7 [Ajan] O8] [AD [A4] (4.12)

{Fy} =M ({Bj} + 4 {B} + {Bj4+1})
6

hsl
+-;_ ([A1 (B4} + [A] {B} + [Aj41] (B))

hs3d o
+ L (IR1 A (84 + [Aj4q) (R @B9)

L
+ —7 [Aj+1] [K] [A] (B;) (4.13)
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From these new definitions of the transfer matrices (4.12) and
(4.13), the rest of the solution, equations (A.13-17), can be directly

applied as usual.

In addition to solving linear problems, the Hunter method, using
either a second-order or a fourth-order Runge-Kutta integration, can
be used to solve nonlinear differential equations. This is
accomplished simply by collecting the nonlinear terms in the [A]
matrix (or the {B} vector) and iterating the solution until successive
(Y} values differ by no more than some predetermined (convergence
criteria) small value. An initial guess can be provided or simply set
to zero (solving the uncoupled problem), and each new set of {Y}
values can then be used to modify the nonlinear [A] matrix (or the
{B} vector). This method has been used to solve several nonlinear
differential equations with a great deal of success, and achieving

convergence in usually five or six iterations.

4.2 Fourth-order Transfer-matrix Error Estimate
Since the above solution method involves a fourth-order
Runge-Kutta integration which is an application of a fourth-order
Taylor series, the error induced in using the approximation can be

estimated by evaluating the Taylor series remainder term [10]

i hs%  d4(vid

(4.14)
4! dx4

The fourth derivative of {Y} with respect to x can be evaluated by

using the chain rule of calculus on equation (4.1).
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CHAPTER 5

COMPUTER PROGRAMS

Two computer programs, written in the FORTRAN programing code on
a personal computer, were developed to solve the equations developed
in chapters 2 and 4. The first program, PROP, computes the cross-
sectional properties for a thin open cross section; and the second
program, SOLVE, solves the governing equations that are summarized in
figure 3.1. Both of the programs were developed for the desk-top
personal computer and were designed to run independent of each other;
however, they are easily coupled through a data-base or spread-sheet

program such as LOTUS-1-2-3.

5.1 Program PROP

Program PROP computes all of the required cross-sectional area
properties that are described in chapter 2.4.2 by using the equations
developed in appendix B. This program is written in FORTRAN-77 for
the personal computer and can easily be up-loaded to a mainframe
computer that uses a similar version of FORTRAN. The program only
requires ordered pairs of coordinates that adequately define the upper
and lower surfaces. These points need not be evenly spaced or have

coincidence abscissa coordinates.
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Figure 5.1 is a flowchart of the program PROP. The program, upon
being started, reads from a user-defined file the upper and lower
surface definitions. Next, the user is prompted to input the number of
equally spaced integration points. This option is provided so that
the user can determine if the numerical integration of the equations
in appendix B have converged. The equal spacing of the integration
points are determined by linearly interpolating between the input
surface definitions. Thus, a reasonable description of the surfaces
needs to be input. For the geometries considered in this analysis,
the cross-sectional properties indicated convergences with 150 to 200
integration points. After the number of integration points has been
determined, the program then computes the chord length and the n
equally spaced stations. From this data, the area and shear center
are computed, then the cross-section properties are computed about the
shear center. The user is then prompted to input an angle about which
the properties are to be transformed. The transformed properties are
computed and printed, and the user is prompted to input more data. If
more data are to be analyzed, the program is reinitialized and

restarted.

5.2 Program Solve
The Hunter transfer-matrix method described in appendix A and the
fourth-order matrices developed in chapter 4 have also been programed
in FORTRAN-77 for the personal computer. This program yields a solu-
tion to the equation summarized in figure 3.1 using the boundary

conditions in equations (3.17) and (3.18).
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Figure 5.2 is a flowchart of the program SOLVE. Tﬁis program
requires as input the number of station and the properties shown in
the matrices in figure 3.1 for each station that is defined. Upon
starting the program, all inputs are read in a table format, and all
undefined variables are set to zero. The program is initialized by
setting the iteration counter to one and assuming all nonlinear
variables are zero. This usually solves the linear uncoupled problem
and is a reasonable estimate for the second iteration. The station
matrices, [A] and {B}, are assembled in a user written subroutine that
has been precompiled with the main program. Upon assembling the [A]
and {B} matrices, the other system matrices are assembled. Then using
the boundary condition, the first station is related to the last,
resulting in a single linear matrix equation that requires solving.
Once the complete solution at station one is known, then equation
(A.11) is repeatedly applied until all of the {Y;j}'s have been found.
Since the check values of the solution variables are preset to zero,
the first convergence check always fails and the second iteration is
automatically started. After the second iteration, subsequent itera-
tions produce smaller and smaller errors until the convergence checks
are satisfied. When convergence is achieved the solution is printed

and the program terminated.
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CHAPTER 6
RESULTS OF APPLICATION

To determine the effect of the centrifugal force stiffening on a
rotating beam, two example cases are evaluated, each for a blade
rotating at a constant angular speed of 475 revolutions per minute
(RPM). The first case compares the transfer-matrix solution of the
governing equations to a nonlinear finite-element analysis of a
rotating 7- by 10-Foot Wind Tunnel fan blade that neglects the effects
of the mass axis and elastic axis being eccentric. The second case
includes the effect of the mass axis being eccentric from the elastic
axis for the transfer-matrix solution and evaluates the influence of

the nonlinear terms on the response.

6.1 Nonuniform, Noneccentric, Twisted Fan Blade

A special case of the fan blade geometry presented in appendix B
where the mass axis eccentricity is neglected is analyzed using both
finite elements and the transfer-matrix solution. Both models were
analyzed using a set of steady aerodynamic design load that were
developed by the Ames Research Center specifically for the 7- by

10-Foot Wind Tunnel fan blades.

6.1.1 Transfer-Matrix Solution
The equations that are summarized in figure 3.1 were solved using
the program that is discussed in section 5.2 and the cross-sectional
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properties summarized in appendix B. The steady aerodynamic loads
shown in table 6.1 were assumed to act the quarter-chord point; and,
therefore, had to be transferred to the elastic axis which resulted in
a distributed torque along the blade in addition to the transverse
loadings. A converged solution, following the flow-chart shown on
figure 5.2, was achieved in seven iterations. Since the steady
aerodynamic loadings were discontinuous at station 96, a double
station was used at this station. This was accomplished easily by
utilizing the feature of reducing the transfer matrix to an identity
matrix when h; = 0 ( or a double station). Taking advantage of this
precludes the solution algorithm from tapering the applied loading to

zero from station-to station.

TABLE 6.1 - AERODYNAMIC DESIGN LOAD INTENSITIES

STATION AXIAL TANGENTIAL
(in) (1bs/in) (1bs/in)
96 34.55 14.33
106 45.23 15.94
116 55.08 16.54
126 65.37 17.09
136 74.78 17.24
146 83.10 16.93
156 88.97 16.04
166 90.48 14.44
173 89.91 13.07
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6.1.2 Nonlinear Finite-Element Solution

As a means of performing an accuracy check on the transfer-matrix
solution, a finite-element model of the fan blade using two-noded beam
elements and the EAL [12] finite-element computer code was analyzed on
the CYBER CY17-855 mainframe computer. The finite-element analysis
assumes the reference axis of the beam is the centroid axis while the
transfer-matrix solution uses the elastic axis as the reference axis.
To avoid over complication for a test case, the mass axis off-sets
were neglected. This allowed the same loads to be input for both
analysis without additional transformations, with the exception of the
torque. The transverse loadings were input to the finite-element code
as distributed load; however, no such feature exists for moments.

This difficulty was overcome at the expense of inducing a small error
by inputing the distributed torque as a discrete torque at each grid
point. A similar approximation was induced by discretizing the
geometry into elements with constant properties (the transfer-matrix
solution assumes variable properties between stations). After
defining the model and loads, the geometric nonlinear analysis (GNA)
runstream element of EAL was modified to allow for the previous itera-
tion's displacements to be used in computing the centrifugal forces
due to the fan blade rotating at 475 rpm (49.742 rad/sec).

Introducing this additional nonlinearity, resulted in the EAL code

requiring 31 iterations before convergence was achieved.
6.1.3 Transfer-Matrix and Finite-Element Solution Comparison

The solution results for the finite-element and transfer-matrix

methods are compared. This method of validating the transfer-matrix
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method for the rotating beam problem was selected due to the absence
of any experimental or analytical data in the literature. All of the
studies that were surveyed were centered around predicting and corre-
lating the natural frequency response (frequency and mode shapes) of a
rotating beam. If any displacements and loads were computed, they

were for a nonrotating propeller or fan blade under static loads.

The two solution methods could not be compared directly on all
responses due to the basic formulation differences. Comparisons are
made on the displacements, rotations, twist, and support reactions.
Internal loads could not be compared due to the finite-element
approach of discretizing variable properties. However, all of the
other quantities were compared. Support reactions for both solution
methods are shown in table 6.2; these results indicate that there is a
excellent agreement between the two methods. The largest percentage
difference was in the twisting moment (only 2.1 percent). This is
expected since the pretwist of the blade is explicitly accounted for
in the transfer-matrix method, and is only approximately accounted
for in the finite-element solution by transforming the principal axes
of the cross section for an element. The displacement results
(figures 6.1 through 6.6) with the exception of the axial displace-
ment, figure 6.1, of the blade, agree extremely well. What is seen
here is the primary difficulty of using finite-elements to solve this
type of problem. The application of the centrifugal force, using
finite elements, results in the inertial force (a function of mass,
location, and deformations) becoming a lumped nodal quantity which at

the stress-free end of the blade (tip) is not stress free. Because of
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this condition, the displacement quantities at the end of the blade

using finite elements may be in error.

TABLE 6.2 - SUPPORT REACTION COMPARISON

REACTION FINITE ELEMENT  TRANSFER MATRIX PERCENT
TYPE RESULTS RESULTS DIFFERENCE

T (1bs) 173,205 173,835 - 0.4

vy (1bs) - 1,855 - 1,847 0.5

v, (1bs) 5,382 5,382 - 0.0

My (in-1bs) 33,911 34,632 - 2.1

My (in-1bs) -367,055 -372,021 - 1.3

Mz (in-1bs) - 82,547 - 82,980 - 0.5

With the noted exceptions, the finite-element and transfer-matrix
solution method agreement is good; thus, this comparison is considered
to verify the transfer-matrix solution of the governing differential

equations for a rotating beam.

6.2 Nonuniform, Eccentric, Twisted Fan Blade
After verifying the solution method, the fan blade model that
was used in section 6.1 was modified to include the offset of the mass
axis from the elastic axis. The solutions for the fully coupled case
(the case where the full set of equations as indicated in figure 3.1
are utilized) and the partially coupled case {(the case where all dis-

placement nonlinearities are neglected) are compared. This comparison
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illustrates the influence of the displacement nonlinearities that are

indicated in figure 3.1.

6.2.1 Fully Coupled Transfer-Matrix Solution
The next solution that is performed is for the fully coupled,

nonlinear, nonhomogeneous differential equations. This represents the
design operating condition for the 7- by 10-Foot Wind Tunnel fan
blades. The steady-state aerodynamic loads at the quarter-chord point
are shown in table 6.1; these loads as indicated in section 6.1.1 are
transformed to the elastic axis. By including all of the displacement
nonlinearities and the mass axis eccentricity, the solution converged

in 12 iterations.

6.2.2 Partially Coupled Transfer-Matrix Solution

To determine the influence of the nonlinear terms shown in
figure 3.1, all of the nonlinear terms that involve displacement and
rotation terms are neglected; this leaves only the centrifugal axial
force, T, coupling term in the bending moment equations. Neglecting
the nonlinear displacement terms, the solution converged in three
iterations. This is easy to see by noting that the axial force, T,
equation is weakly coupled to the other equation through the axial
displacement. The axial displacement term is usually neglected [2],
and, therefore should have little influence on the net axial force
solution. Thus, the axial force solution is nearly exact as a result
of the first iteration; and upon using the first iteration's results
in the second (neglecting the nonlinear displacement terms) the second

iteration should result in a reasonable accurate solution. The third
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iteration is used to insure that the absolute value of the difference
between successive iterations is less than the required criteria.

6.2.3 Fully Coupled and Partially Coupled Transfer-Matrix

Solution Comparisons

Since the number of interations that were required to achieve a
converged solution were found to vary drastically when the displace-
ment nonlinear-terms were considered, a comparison of the solutions is
made. The more notable effects of these nonlinear terms were observed
to influence the displacements and rotations, and had little or no

effect on the forces and moments.

A comparison of the axial displacement is shown in figure 6.7.
The inclusion of the nonlinear displacement terms has a stiffening
effect that reduce the tip displacement by approximately 25 percent;
this is due to the blade not untwisting as much when the nonlinear

terms are included.

By considering the nonlinear displacement effects on the
transverse deflections (figures 6.8 and 6.9), the deflections
increased on the order of 3 percent. This indicated an insignificant

softening of the fan blade.

The most significant effect on the response is noted when the
cross-sectional twisting of the fan blade is evaluated. This effect
is essentially an order of magnitude stiffer, see figure 6.10. It is
probably for this reason alone that these terms are necessary to
include in performing a loads analysis of a rotating fan blade. For
this analysis, the aerodynamic loadings were considered to remain

constant and independent of the deformed shape of the blade.
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Normally, however, this is not the case, since the aerodynamic
loadings are generally a function of the angle-of-attack of the blade
(relative to the free-stream). The 1ift and drag loads are then
displacement dependent. If the aerodynamic loads are a function of
the blade's displacements, then this condition can be included by
introducing an additional nonlinear term in the load vector which is
iterated along with the other terms or by reformulating the problem as
a beam on an elastic foundation and including the displacement

dependent loads as linear terms in the A-matrix.

Like the transverse displacements, the bending rotations, by
including the nonlinear terms, demonstrates a softer response,
see figures 6.11 and 6.12 for this effect. These terms are strongly
coupled in the moment equations to the mass axis eccentricities, and

therefore would be expected to influence the solution.

Unlike the displacement results, the internal equilibrium loads
are not strongly affected by the presence of the nonlinear displace-
ment term. Figures 6.13 through 6.18 show 1little or no change in the
Toad results. In fact with the exception of the transverse shear, Vy,
and beam bending moment, M,, (figures 6.14 and 6.18) plots of the two
solutions completely overlay each other. These two loads are coupled
and influenced by the y-inertial force component which, according to
equation 2.43, is dependent upon the v transverse displacement and

accounts for this small variation.
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CHAPTER 7

CONCLUDING REMARKS

Nonlinear equations of motion for the coupled elastic bending and
torsion of twisted nonuniform rotating beams are derived. In addi-
tion, a transfer-matrix solution method to solve these nonlinear
equations is developed and presented. Two case were evaluated. The
first case compares the transfer-matrix solution method to results

obtained from a nonlinear finite-element code.

The nonlinear equations were developed by neglecting all but the
first-order terms for the strain, and retaining all other nonlinear
terms in the derivation. The resulting equations are for the coupled
bending-torsion steady-state response of beams rotating at a constant

angular velocity in a fixed plane.

The modified Hunter transfer-matrix method was verified by
comparing results with solutions from a geometric nonlinear finite-
element computer code. These results were shown to agree quite well,
and that as is the case with any special purpose analysis when com-
pared with a general purpose code, the transfer matrix yielded a more
accurate representation and solution of the problem. An analysis of a
proposed new fan blade design for the 7- by 10-Foot Wind Tunnel at the
Langley Research Center was performed, and the effect of including

nonlinear displacement terms on this solution addressed.
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As a result of performing this analysis, two computer codes were
developed for a desk top personal computer. The first program is a
general purpose two-point boundary value problem solver that was used
to solve the nonlinear, coupled governing differential equations of
motion for a rotating beam. The second program performs a numerical
integration for the cross-section properties for a thin open cross

section that can be defined by an upper and lower surface.

This thesis develops the effective and efficient analysis
techniques that consider the unique features common to rotating

systems to determine the steady-state response of rotating blades.
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APPENDIX A

THEORETICAL DERIVATION OF THE HUNTER TRANSFER MATRIX METHOD

The method that is presented here is a solution procedure that
was developed by Dr. William F. Hunter, and used by him for several
years to solve various homogeneous and nonhomogeneous two-point
boundary-value problems. Because to date the method has not been

documented, it is developed in detail in this appendix and referred to

as the Hunter method.

The development of the transfer matrix for the linear coupled

matrix equation of the form

d{Y}
dx

= [A] {Y} + {B} (A.1)

is described. By expressing the equations in matrix notation,
utilizing the transfer matrix as an operator, and applying the
boundary conditions, the coupled Tinear differential equations are
solved completely in two passes over the solution domain. The first
pass is to satisfy all of the boundary condition (natural and
geometric) at the first station; and the second pass develops the

solution at each station within the problem domain.
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Consider a system of linear nonhomogeneous first-order

differential equations that can be expressed in matrix notation as

Y Cora0)T (v(x)} + (BIx)) (A.2)
dx

defined on the closed interval xj<x<x,.

Using subscripts to denote stations and primes to denote
differentiation with respect to x, equation (A.2) at station

i (x = xj) is written as
{Y;'y = [A3]1 {Y;} + {Bj} (A.3)

The boundary conditions at the end-points (x = x; and x = x,) are also

expressed in matrix notation as

[cl (Y1} = {P} (A.4)

{Q} (A.5)

[D] {Yn}
Approximating the value of {Y} at the station (i+l) as follows
[Yie1} = 153 + 2 hy (05') + (Y541 D) (A.6)
2

where

hi = Xi+1 = X{ (A.7)

then equation (A.2) may be written at station (i+l) and substituted

along with equation (A.3), into equation (A.6) to give

) _ . hy
{Yi+1} = (Y1} + E—-([Ail {Yi} + (B} + [Aj41] (Y541} + (Bj41}) (A.8)
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Now, the Yj4; term on the right-hand side of equation (A.8) may be
approximated by using a Taylor series expansion about Y;. Retaining

only those terms up through the first derivative, Y;4; becomes
{541} = Y5+ (Y50}
or
{Yi+1} = Y51 + (DA {Y;} + {Bj}) (A.9)
Substituting equation (A.9) into equation (A.8) gives
hj h12
{Yis1} = ([1] + 7 ([A;] + [Aj41]) + > [Aj41] TA; D) (Y42

hi hiz
+ E—-({Bi} + {Bj+1}) +-E—— [Aj+1] (By} (A.10)

where [I] is the identity matrix. It can be shown that the above
result is a second-order Runge-Kutta integration (see ref. 8) for a

system of equations expressed in matrix form.

Equation (A.10) may be rewritten as

{Yi+1} = [E5] (Y51 + {F;} (A.11)
where
h; hiz :
hs hi?2
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The matrix [Ei] is known as a transfer matrix, since it relates
the values of the state variables at station (i+l) to those at the
station i The transfer-matrix approach is often used to determine
the natural vibration characteristics of beams However, for a
nonhomogeneous system of equations, the solution is complicated by the
appearance of the matrix {Fj} in equation (A 11) Because of {F;}, an
approach much different from that of the natural vibration (homogen-
eous) problem is needed to relate the conditions at one boundary to
those at the other boundary It is at this point that the shooting
methods will iterate the equations until conditions at both boundaries
are satisfied The Hunter transfer-matrix approach as outlined here
eliminates this difficulty by employing a systematic application of
equation (A 11) from one boundary to the other; thus, the boundary
conditions are satisfied directly The development is easily seen by
using equation (A 11) and expanding it out for a few intermediate

stations between boundaries For example,

{Yp} = [E1] {Y1} + {Fy}
{Y5} = [Ea] {Yp} + {Fp} = [Ep] ([Ep] {¥1} + {F1}) + {Fp}
(Vg = [E,] (Y3} + (F3) = [E3] ([Ep] (TE;] (Y1) + (F1}) + {Fp}) + (F3)

Now, the above can be refactored, and {Y;} can be expressed in general

as a function of {Y;} For example, the expression for {Y4} above

becomes

{Ya} = [E3] [E5] (Eq] {Y1} + [E3] ([Ep] (Fp} + {Fp}) + {F3}
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In general, the relationship can be expressed as

{Yi} = [G'i] {Yl} + {H‘i} (i=1,2,...,n) (A.14)
where
(6i] = [E5_11 [Gj_1] (i=2,3,...,n)
[6;] = [1] (A.15)

{Hy} = [E5_1] {Hy_1} + {Fj_1} (i=2,3,...,n)
0 (A.16)

{H1}

With equation (A.14), the state vector at one boundary can be related
to the vector at the other boundary. Thus, equation (A.15) for i=n

becomes
{Yn} = [G6y] {Y1} + {Hp} (A.17)

The boundary conditions must be applied in order to determine {Y;}.
Equation (A.17) may be substituted into equation (A.5), and the

results combined with equation (A.4) to give

[ [c] [ {P}
I_E ....... Y1y = ': --------------- (A.18)
D] [Gpl {Q} - [D] {Hp}

Since the coefficient matrix is nonsingular, equation (A.18) can be
solved for {Y1}. The solution for {Y;} (i>1) is obtained simply by

applying equation (A.11) repeatedly.

It is worth emphasizing that the Hunter method, given above, does
not require any iteration, and obtains the solution in a direct

manner. As with other transfer matrix methods, very little computer

52



storage is needed. The method requires stepping through the problem
domain from one boundary to the other twice. The first step-through

is made to obtain {Y1}, and the second step-through yields the

solution.

Another feature is that the integration process conveniently
handles any discontinuities in the physical properties (such as beam
mass or stiffness, for example) of the problem by allowing double

stations at any xj (note that the transfer matrix [E;] reduces to the

identity matrix for h;j = 0, see equation (A.12).)
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APPENDIX B

CALCULATION OF 7- BY 10-FOOT WIND TUNNEL
FAN BLADE SECTION PROPERTIES

In order to perform the analysis of the 7- by 10-Foot Wind Tunnel
fan blade new design, the cross-sectional properties as defined by
equations (2.65-74) need to be calculated about the shear center of a
cross section relative to the beam's y-z coordinate system. (See
figure 2.1.) Since the definition of a fan blade is usually given by
coordinates that define the upper and lower surfaces, equations
(2.65-74) can be rewritten in a forqithat will allow for numerical
integration of the equations. The purpose of this appendix is to
present the modified and transformed cross-section integral equations
as well as the numerical results when applied to a new 7- by 10-Foot

Wind Tunnel fan blade design.

A typical cross section of an airfoil-shaped fan blade and
associated coordinate systems are shown in figure B.l1. The cross-
sectional coordinates of the lower (Ay) and upper ();) surfaces are
given in the y - » system. When the shear center is located, the
Y1 - zj system is used to compute the section properties parallel to
the y - A system but about the shear center (ys, Ag). Since a typi-

cal cross section can be twisted about the shear center relative to
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the y-z system, the cross-sectional properties need to be transformed.
The section properties transformed to the y-z system (shown in

figures 2.1 and B.1) are then calculated.

Blade description data is assumed to be defined in the ¢ - )
system. The area and shear center location are computed in this

system by the following equations.

C
A = gr (Ay = Ag) d v (B.1)
(0]
C
f P(ry - Ap)3 d
_ ) v * v (B.2)
Yg = p
f (Ag - 2g)3 dy
0
-2
A = (y = 2p) (B.3)

Y = Yg

where ¢ is the chord length.

Equation (B.2) is developed by considering equilibrium of a
differential element under bending and requiring that the sum of the
internal moments about the point called the shear center to vanish.
Equation B.3 is an approximation that is used in this analysis for a

thin airfoil shape.
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The other section integrals are

C
y (8.4)
Yl:% S - Oy - rg) d
0
C 5 )
G . (8.5)
C (B.6)
Iy1 v1 =% fo Ly - )\5)3 - C )‘5)3] d v .
Cc
(B.7)
IZl 3] =f (w - ws)z ()‘U - }\2) d "
0
C
B.8
yyzp=d (0= vs) [0y =22 - (g - 25021 d (6.8)
0
-ﬁl =y1 ’ (B.9)
e ol (B.10)
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c

- 2
P3 =~f (LOy = 2612 - (g = 2)2] A 2 )
0
sy - a4 - (g - 24 d v (B.11)
4
c
Py =.f‘ [y - vg)3 (ay - 2g) + A ; ¥s) [ay = A)3
0
B.12
- (g - A3 d (8-12)
c
Ps =~r Uy - ws)? (g = Ay) +‘% [y = 2615 = (ag = 2)°]
0
2 (\P = ‘J)s) 3 3

The torsional stiffness constant [11] can be calculated by

£ ¢
J = f 3
L+ 4F where F = (Ag = Ag)° dc (B.14)
3Ac2 0

The following transformation rule relates the y; - z; system to

the y-z system.
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y1 cos (Bt) + 27 sin (Bt)

<
"

-y1 sin (Bg) + zy cos (B)

N
n

Using the transformation indicated in equation (B.15), the
cross-section properties (equations (B.4-13)) in the y-z system
become

Ym = Y1 cos (B¢) +Z7 cos (B¢)

Zp = - y1 sin (8¢) +Z1 cos (By)

Iyy = Iyg Y1 cos? (Bg) + I, z; sin (8t)

- 2 Iyp zq cos (B¢) sin (8y)

IZZ = Iyl yl Sinz (3t) + Izl Zl C052 (Bt)
+ 2 Iyg 29 cos (Bg) sin (By)

(B.

(B.

lyz = ly; yq [cos (Bt) sin (B¢)] - I 7, [cos (Bt) sin (8¢)]

+Iy) 25 [cos? (gy) - sin? (8¢)]
P1 =ym A

P2 =zp A

P3 = - F4 sin (Bt) + 33 cos (Bt)

Pq cos (By) + P3 sin (8y)
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The properties, A, J, and Pg, are invarient, and, as such, they are

not effected by coordinate transformations.

A sketch of a 7- by 10-Foot Wind Tunnel blade is shown in figure
B.2. The stations indicated along the span of the blade are the
points where the cross sections were cut and properties calculated.
Figures B.3-18 show the cross section and indicates the cross-
sectional properties in the y-z systems. For this analysis the fan
blade from station 57.375 down toward the center of rotation was

considered fixed due to the rigid attachment to two thick steel disks.
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Principal
¢Z  minor axis
1 of inertia

n
B+ 0)
» [ L LA y

Fig 2.1 Geometry and sign convention of rotating beam

(a) Undeformed .(b) Deformed

Fig 2.2 Cross-sectional geometry
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y
A

<—-dx——> .
dv Cross-section
dx plane
v Iv + dx —

(a) Bending in the x-y plane

Cross-section
plane

(b) Bending in the x-z plane

«XTU—-
- X

(c) Extension of elastic axis

Fig 2.3 Cross-sectional deformations
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1=

AN

D Q

= 16

El_astic axis
Mass axis

Z Cross-section
mass center

Fig 2.4 Orientation of rotating beam in undeformed configuration

Fig 2.5 Rotating beam under steady-state aerodynamic loads
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q /
Cross-section mass center y
(c) y-z plane

Fig 2.6 Equilibrium of differential bending element
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Deformed blade
Undeformed blade

Mass axis
Elastic axis

Fig 2.7 Internal e]astié loads
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T x
{ Read upper/lower surface coordinates
¥
ﬁ nput number of integration points
n
Y
Compute chord length and n equally spaced stations
Y
Compute area and shear center
¥
Compute cross-section properties about shear center
Y
input transformation angle
Y
Recompute cross-section properties
about transformed system
!
/ Output computed properties /

Fig 5.1 Flow chart of program PROP
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Axial, u, displacement

B8
1

Displacement,
in.

- 02+ O Transfer matrix
- 03 O Finite elements

- 05 | | ] ] ] | |
" 50 70 90 110 130 150 170 190

Station, in.

Fig 6.1 Comparison of axial displacements

Beamwise, v, displacement

Displacement,
in.

O Transfer matrix

-6 O Finite elements

_.8_

-L0 | | | | | ] }
50 70 90 110 130 150 170 190

Station, in.

Fig 6.2 Comparison of beamwise displacement
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Displacement, 1,2 —

in.

Rotation,
radians

Chordwise, w, displacement

2.4 —

20 O Transfer matrix

) O Finite elements

L6}

R im

A
0

-6 | 1 | | | | J
50 70 90 110 130 150 170 190

Station, in.

Fig 6.3 Comparison of chordwise displacements

Twist, ®, rotation

-2k O Transfer matrix

- 03 O Finite elements

-.04 -

- 05 | 1 1 1 ] I J

750 70 90 110 130 150 170 190
Station, in.

Fig 6.4 Comparison of cross-sectional twist
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Rotations,
radians

Rotations,
radians

01

-.01
)
-.03

_.04._

_.05

S SRS
|

Bending, ey, rotation

O Transfer matrix
- O Finite elements

vl

| | L | | | 1

50 70 90 110 130 150 170 190

Station, in.

Fig 6.5 Comparison of oy rotations

0
-.01
-, 02
-.03
-
=05

Bending, ez, rotation

- O Transfer matrix
— O Finite elements
-
-

| I T M N AN N M M O O N

50 70 90 110 130 150 170 190
Beam station, in.

Fig 6.6 Comparison of oy rotations
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Radial, u, displacement

8 g
-

Displacement, 0
in. .025 —

O w/o nonlinear terms
O w/ nonlinear terms

| I | | 1 | J
50 70 90 110 130 150 170 190

Beam station, in.

Fig 6.7 Axial displacement

Beamwise bending, v, displacement

0

_.1

_.2

Displacement, 3
. 4

O w/o nonlinear terms
O w/ nonlinear terms

| | | i ! I J
50 70 90 110 130 150 170 190
Beam station, in.

Fig 6.8 Beamwise transverse bending displacement
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Chordwise bending, w, displacement

1.6~
1.4+ O w/o nonlinear terms
L2+ O w nonlinear terms

Lo

Displacement, 8
in. ’

6
A
2
0 l ] | ] }

50 70 90 110 130 150 170 190
Beam station, in.

Fig 6.9 Chordwise transverse bending displacement

Twist, @, rotation
040 ~
.035 - O w/o nonlinear terms
.030
.025

Rotation, .020
radians Q15

.010
.005

O w/ nonlinear terms

-. 005 ] ] I ] ] i J
50 70 90 110 130 150 170 190

Beam station, in.

Fig 6.10 Beam twist, ¢
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Bending, ey, rotation

- 004 O w/o nonlinear terms
O w/ nonlinear terms

_.008 -

- 012 -

Rotation,
radians - 016

-.020 -

-0 -

-. 028 | ] ] | ] ] |
50 70 90 110 130 150 170 190
Beam station, in.

Fig 6.11 Bending rotation, By

Bending, ez, rotation

O w/o nonlinear terms
O w/ nonlinear terms

Rotation, --004 -
radians - 005}
-.006 -
-.007
-.008 -

-. 009 | ] | | L)
50 70 90 110 130 150 170 190

Beam station, in.

Fig 6.12 Bending rotation, 9,
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Axial, T, force

O w/o nonlinear terms
O w/ nonlinear terms

Force, 100
kips 80

] ] | 1 ]
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Fig 6.14 Beamwise shear force, Yy
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Fig 6.16 Twisting moment, My
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Fig 6.18 Beam bending moment, M,
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Fig B.2 7- by 10-Foot Wind Tunnel fan blade
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Fig B.3 7- by 10-Foot Wind Tunnel fan blade station 57.375
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Fig B.4 7- by 10-Foot Wind Tunnel fan blade station 60.000
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Fig B.5 7- by 10-Foot Wind Tunnel fan blade station 66.000
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Fig B.6 7- by 10-Foot Wind Tunnel fan blade station 74.000
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Fig B.7 7- by 10-Foot Wind Tunnel fan blade station 78.000
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Fig B.8 7- by 10-Foot Wind Tunnel fan blade station 82.000
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Fig B.9 7- by 10-Foot Wind Tunnel fan blade station 84.000
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Fig B.10 7- by 10-Foot Wind Tunnel fan blade station 96.000
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Fig B.11 7- by 10-Foot Wind Tunnel fan blade station 106.000
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Fig B.12 7- by 10-Foot Wind Tunnel fan blade station 116.000
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Fig B.13 7- by 10-Foot Wind Tunnel fan blade station 126.000
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Fig B.14 7- by 10-Foot Wind Tunnel fan blade station 136.000
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Fig B.15 7- by 10-Foot Wind Tunnel fan blade station 146.000
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Fig B.16 7- by 10-Foot Wind Tunnel fan blade station 156.000
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Fig B.17 7- by 10-Foot Wind Tunnel fan blade station 166.000

| Properties
| 16 - A 68.82 (in2)
| 12 |- ym -1.22 (in)
| zm -0.24 (in)
8 lzz 103.6(in4)
Al lyy  4982.0(in})
2-axls, 597.9 (in%)
in. 0 118,6 (in%)
4L -83.8(in3)
-16.8 (in3)
8+ P3  -3178.6(in%)
‘ P4 -26062.8 (in°)
i -2 - PS5  854796,8 (inb)

-16 1 | ! | J

30 20 -10 0 10 20 30

y-axis, in.
Fig B.18 7- by 10-Foot Wind Tunnel fan blade station 173.000
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